钙钛矿修饰玻碳电极循环伏安法测定银离子的研究

雷龙文 潘雨欣 蘆彦杰

(安庆师范大学 化学化工学院 安徽 安庆 246011)

摘要: 首先合成了钙钛矿 $C_2H_4(NH_3)_2Pb_2Br_6NCs$ 然后将钙钛矿修饰到玻碳电极上,修饰好的电极对 Ag^+ 的灵 敏度最好。为此,优化了钙钛矿修饰玻碳电极测定 Ag^+ 的条件为: 0. 10 mol·L⁻¹邻苯二甲酸氢钾-硝酸缓冲液 (pH 3. 80) 2. 5 mL ,1. 0 mol·L⁻¹ KNO₃ 6. 5 mL。测定 Ag^+ 的线性范围为 $\Delta I = 2.206$ 6c+7.366 2(c 的单位 μ mol ·L⁻¹) 线性相关系数为 0.9960 检测限为 0.80 μ mol·L⁻¹。11 次测定的相对标准偏差(RSD)为 3.5%。该 方法用于铜陵有色金属厂的废水样品测定,回收率在 99.0%~101.0%之间,此结果与电感耦合等离子发生光 谱仪(ICP)测定结果吻合。

关键词:钙钛矿;修饰电极;循环伏安法;银离子

中图分类号: 0657.1 文献标志码: A 文章编号: 1673-8020(2021) 01-0057-05

银是一种常见的贵金属元素,广泛用于冶金 工业、化学工业、电器和饰品等领域,银离子药用 方面的主要功效是抗菌、除臭和伤口的愈合,但环 境中残存的银离子对人体健康存在着潜在的危 害,人体摄入过量银离子或银盐,会使人的皮肤、 眼睛受损,因此快速、准确测定银离子具有重要 意义。

目前测定痕量银的方法主要有分光光度 法^[1]、荧光光谱分析法^[2]、原子吸收光谱法^[3]、溶 出伏安法^[4]、离子选择性电极和修饰电极法^[5-7] 等,其中电化学方法由于仪器体积小、操作简便、 成本低廉、灵敏度高等优点,日益引起人们的关 注。化学修饰电极通过近50年的发展取得了长 足的进步,由于其电极表面的某些功能团存在,还 起到分离、富集的作用,因此,近年来化学修饰电 极在金属离子分析^[8]、药物分析^[9]、农药^[10]方面 非常活跃,成为电分析化学领域的重点研究方向 之一。

钙伏矿具有独特的结构和物理化学性质,将 其用于修饰电极测定金属银离子目前尚未见文献 报道。本文在合成钙钛矿的基础上,利用钙钛矿 修饰玻碳电极,通过循环伏安法实现了对环境水 样中痕量银的高灵敏度、高选择性的测定。

1 实验部分

1.1 主要仪器和试剂

CHI 660A 型电化学工作站(上海辰华仪器公司);三电极系统:钙钛矿修饰玻碳电极为工作电极,饱和甘汞电极为参比电极,铂丝电极为对电极。Optima 8000 等离子体发射光谱仪(Perkin Elmer 公司)。

银标准储备溶液: 1.0×10^{-3} mol·L⁻¹,所用其 他浓度标准溶液由此储备液逐步稀释而成; 钙钛 矿自己合成。其它试剂除非特殊说明,均为分析 纯,整个实验用水为上海默克密理博明澈 D24UV 超纯水机生产的超纯水(18.2 MΩ)。

1.2 钙钛矿的合成

将 15 mL 乙二胺冷却到 0 ℃,在搅拌下缓慢 加入 14.25 mL HBr。搅拌 1 h 后 混合物在 50 ℃ 下旋蒸。旋蒸所得物用乙醚洗涤三次并离心,真 空干燥得到前驱体 $C_2H_4(NH_3)_2Br_2$ 。0.64 mmol $C_2H_4(NH_3)_2(Br)_2$ 、0.23 g PbBr₂、500 µL 油酸和 25 µL 正辛胺溶解在 5 mL DMF 中 在搅拌下缓慢

收稿日期: 2020-10-02; 修回日期: 2020-11-02

基金项目: 国家自然科学基金(21601002/B010303);省部共建煤炭高效利用与绿色化工国家重点实验室开放课题(2019-KF-31)

第一作者简介: 雷龙文(1995—) 男 安徽安庆人 硕士研究生 研究方向为电分析化学。E-mail: llw959158@163.com

⁽通信作者简介:重彦杰(1962-2月)陕西延安天]教授、硕士研究生导师「硕士]研究方向为光、电【色谱分析。至2miail: dongyjique@ 126.com ki.net

将 DMF 混合液滴加到 30 mL 甲苯中,搅拌 2 h 后,产物在 6000 r • min⁻¹下离心 5 min,得到白色 沉淀物,即为 C₂H₄(NH₃)₂Pb₂Br₆NCs,将产物密 封避光保存。

1.3 钙钛矿玻碳电极的制备

玻碳电极分别用 0.3 μm 和 0.05 μm 的抛光 粉抛光 然后用超纯水冲洗 ,抛光后的玻碳电极放 入体积比为 1:1的硝酸水溶液中超声清洗 1 min ,然 后取出用超纯水冲洗 ,再将玻碳电极放入体积比为 1:1的乙醇溶液中超声清洗 1 min ,取出后用乙醇冲 洗 静置晾干备用。将 $C_2H_4(NH_3)_2Pb_2Br_6NCs$ 超 声分散到甲苯溶液中(0.015 g•mL⁻¹) ,然后取 10 μL 混合液体 ,滴加到打磨好的玻碳电极表面 .暗处 晾干后制成 $C_2H_4(NH_3)_2Pb_2Br_6NCs$ 修饰的玻碳电 极 即 $C_2H_4(NH_3)_2Pb_2Br_6NCs$ IGCE^[11-13]。

1.4 实验方法

用移液管向体积为 10 mL 的样品池中加入一 定量 1.0 mol·L⁻¹ KNO₃ 溶液和 0.10 mol·L⁻¹缓 冲溶液 ,再继续加入一定量 1.0×10⁻³ mol·L⁻¹单 一金属离子溶液 ,混合溶液用磁子搅拌均匀后静 置备用。按照上述方法每种金属离子配制相同浓 度的两份混合溶液。采用三电极工作系统 ,先将 未修饰的裸电极插入混合溶液中 ,选用循环伏安 扫描(-0.2~0.8 V) 直至循环伏安曲线稳定为 止,记录循环伏安曲线。取出参比电极和对电极 , 用超纯水冲洗后短暂静置待其表面干燥 ,将工作 电极换成钙钛矿修饰玻碳电极 ,采用循环伏安法 (-0.2~0.8 V) 将钙钛矿修饰玻碳电极在相同溶 液中的循环伏安曲线稳定为止 ,记录循环伏安 曲线。

2 结果与讨论

2.1 钙钛矿修饰玻碳电极对金属离子的选择性

用循环伏安法研究了 1.0×10^{-3} mol·L⁻¹不同 金属离子溶液在未修饰的裸电极和钙钛矿修饰玻 碳电极上的电化学行为,计算出每种金属离子的 峰电流差值 $\Delta I(\Delta I = 修饰电极峰电流-裸电极峰$ 电流),钙钛矿修饰玻碳电极对金属离子的选择性如图 1 所示。由图 1 可以看出:钙钛矿修饰玻碳电极对 Ag 的选择性最好。

carbon electrode for metal ions

2.2 Ag⁺在钙钛矿修饰玻碳电极上的电化学行为

用循环伏安法研究了 1.0×10^{-3} mol·L⁻¹ Ag⁺ 在钙钛矿修饰玻碳电极上的电化学行为,在同样 条件下, 1.0×10^{-3} mol·L⁻¹ Ag⁺在裸露的玻碳电 极上只显示出很微弱的电化学响应,这与 Ag⁺在 钙钛矿修饰玻碳电极上的电化学行为形成了明显 的对比(如图 2)。这是因为钙钛矿具有独特的电 化学性质和大比表面积,为 Ag⁺在电极表面的电 化学过程提供了很多的反应位点,从而使电子交 换变得容易,也大大提高了测定的灵敏度。

_

2.3 实验条件的优化

2.3.1 缓冲溶液组成的影响

利用循环伏安法研究了 1.0×10^{-3} mol·L⁻¹ Ag⁺在不同 pH 的分析底液,如 pH 2.2~3.8 的邻 苯二甲酸氢钾—硝酸缓冲液、pH 3.0~8.0 的磷酸 氢二钠—柠檬酸缓冲液、pH 2.6~6.0 的 NaAc-HAc 缓冲液等溶液(浓度均为 0.10 mol·L⁻¹)中 的电化学行为。结果表明,在相同 pH 下,邻苯二 甲酸氢钾-硝酸缓冲液(体积 1.0 mL)中电流峰值 最大,峰形较好,结果见图 3。

2.3.2 缓冲溶液用量的影响

在邻苯二甲酸氢钾一硝酸作为缓冲溶液中 周 定体系中 KNO₃ 和缓冲液的总量不变(9.0 mL) ,通 过改变加入缓冲液的含量来确定最佳缓冲溶液的 用量 利用循环伏安法测出不同含量的缓冲溶液 对 1.0×10^{-3} mol • L⁻¹ Ag⁺在钙钛矿修饰玻碳电极 上的电化学行为的影响(如图 4) ,发现电流峰值 在缓冲溶液含量为 2.5 mL ,KNO₃ 含量为 6.5 mL 的时达到最大值。

2.3.3 缓冲溶液 pH 的影响

用不同 pH 值的缓冲溶液 加入的量为 2.5 mL, 其它条件相同,利用循环伏安法测出不同 pH 下 Ag⁺在钙钛矿修饰玻碳电极上的电化学行为的变 化(如图 5),发现电流峰值在缓冲溶液 pH 为 3.80 时达到最大值。

图 4 缓冲溶液用量的影响

图 5 缓冲溶液 pH 的影响 Fig.5 The influence of buffer solution pH

2.4 线性范围、检测限及电极重现性

在优化的实验条件(见表 1)下 配置一系列标 准 Ag^+ 溶液 利用循环伏安法研究了 Ag^+ 在钙钛矿 修饰玻碳电极上的电化学行为,实验结果表明:在 2.0~10.0 µmol·L⁻¹范围内,Ag⁺的峰电流差值 ΔI 与浓度呈现良好的线性关系(如图 6),其线性 回归方程为: $\Delta I = 2.206 \ 6c + 7.366 \ 2(c \ 6) 单位$ µmol·L⁻¹),线性相关系数为 0.996 0,检测限为 0.80 µmol·L⁻¹。用更新表面的电极测定 4.0 µmol·L⁻¹ Ag⁺溶液 11 次的相对标准偏差 (RSD)为 3.5%,说明此修饰电极具有很好的重 现性。并与 ICP 测定条件的对比(见表 1)可知,

(C)1994-2021 China Academic Journal Electronic Puli家病法使用方便 I成杰较低served. http://www.cnki.net

表 1 标准曲线实验参数与 ICP 测定条件的对比

Tab.1 Comparison of experimental parameters of standard curve experiment and ICP measurement conditions

标准曲线实验参数	ICP 测定条件
$c(\text{ KNO}_3) = 1.0 \text{ mol} \cdot \text{L}^{-1} \text{ 6.5 mL}$	仪器需要预热(30 min 以上)
c(Buffer solution) = 0.10 mol $\cdot L^{-1}$ 2.5 mL	需要高纯 Ar 气(费用大)

2.5 干扰实验

在优化的最佳实验条件下 测定 4.0 μmol・L⁻¹ Ag^{*}溶液时 峰电流在±5%的范围内 ,常见金属离 子的干扰情况如下: 10 000倍的 K⁺、Na⁺, 30 倍的 Ni²⁺ 20 倍的 Cd²⁺、Ba²⁺, 10 倍的 Cr³⁺、Pb²⁺、Mg²⁺、 Al³⁺、Zn²⁺、Ca²⁺、Fe²⁺、Cu²⁺等不干扰银的测定,说 明该修饰电极具有良好的抗干扰能力。

2.6 样品分析

准确取一定量的待测水样(视其银量而定), 加硝酸消解(废水样中有少量油性物质)、蒸发至 近干。加10 mL 水和2 滴硝酸,加热至沸腾。冷 却以后再转移到100 mL 容量瓶中,加水定容,摇 匀待测。

在优化的实验条件下,取1.0 mL 铜陵有色金 属厂的废水样品,采用标准加入法测定其中 Ag⁺ 的浓度,结果见表 2。回收率在 99.0%~101.0% 之间。为了验证测试结果,同时用电感耦合等离 子发生光谱仪(ICP)测定,两种方法对照结果很 吻合^[14]。

表 2	样品回收实验数据与国标分光光度法对照表	

Tab.2 Sample recovery	experimental	data and	comparison	table w	vith national	standard	spectro	photometr
1 1	1		1					

序号	样品量/mL	加标量/μL	循环伏安法测定值/(μ mol・ L^{-1})	ICP 测定值/(µmol・L ⁻¹)	回收率/%
1	1.0	—	10.00	10.05	—
2	1.0	100.0	19.90	20.01	99.0
3	1.0	200.0	30.20	29.98	101.0

注: 标准 AgNO₃ 溶液浓度为 1.000 mol・L⁻¹。

3 结论

本文自己合成了钙钛矿 $C_2H_4(NH_3)_2Pb_2Br_6NCs$, 并将其修饰到玻碳电极上,实验发现此修饰电极 对 Ag^+ 的灵敏度非常好。实验确定了钙钛矿修饰 玻碳电极测定 Ag^+ 的条件为: 0. 10 mol·L⁻¹邻苯 二甲酸氢钾—硝酸缓冲液(pH 3. 80) 2. 5 mL, 1.0 mol·L⁻¹ KNO₃ 6. 5 mL。测定 Ag^+ 的线性范围 为 $\Delta I = 2.206 6c+7.366 2(c 的单位 \mu mol·L⁻¹) 线$ 性相关系数为0.996 0,检测限为 0.80 μ mol·L⁻¹。 11 次测定的 RSD 为 3.5%。该方法用于铜陵有 色金属厂的废水样品测定,回收率在 99.0%~ 101.0%之间 此结果与用电感耦合等离子发生光 谱仪(ICP)测定结果吻合。

参考文献:

- [1] 孙琦 涨卓娜 杨艳伟.火焰原子吸收分光光度法对 消毒剂中银离子测定方法研究[J].中国消毒学杂 志 2018 35(1):1-3.
- [2] 王苏,李忠玉,赵宝丽,等.基于吲哚克酮酸染料的 Ag⁺比色/荧光识别探针[J].精细化工(Fine Chemicals) 2014,12(31):1512-1516.
- [3] 王新华.以吡咯啶二硫代氨基甲酸铵为基体改进剂 的水中银的石墨炉原子吸收测定法[J].环境与健 康杂志 2010,10(27):895-897.
- [4] 明亮,习霞.多壁碳纳米管修饰电极阳极溶出伏安 法测定痕量银[J].冶金分析,2011,31(5):45-48.
- Pub(5jnm重文斌:碘离子修饰的 B=Z化学振荡体系检测银离ki.net

子[J].广东化工 2016,11(43):101-102.

- [6] 黄晶晶,贾艳辉,侯卫华,等.聚L-组氨酸/铁氰根修 饰电极测定痕量银[J].滨州学院学报,2010,32 (8):711-714.
- [7] 金根娣,杨阿喜.修饰碳纤维电极为工作电极一溶
 出伏安法测定银离子[J].理化检验-化学分册(PT-GA) 2008,44(12):1155-1157.
- [8] LÊOPOLDINE S G ,PRACHI G ,VICTOR C B ,et al. Oxygen Plasma/Bismuth Modified Inkjet Printed Graphene Electrode for the Sensitive Simultaneous Detection of Lead and Cadmium [J]. American Journal of Analytical Chemistry 2020 ,11(1):1-14.
- [9] FARAHI A ,HAMMANI H ,KAJAI A et al.Electro-catalytic detection of dopamine at carbon paste electrode modified with activated carbon: analytical application in blood samples [J]. International Journal of Environmental Analytical Chemistry ,2020 ,100 (3):

295-310.

- [10] SÃO P S B ,SÃO P D B. Functionalised multi-walled carbon nanotubes-modified electrode for sensitive determination of Diuron in seawater samples [J]. International Journal of Environmental Analytical Chemistry , 2019 99(15): 1565-1574.
- [11] 谭肖,邹桂珍.光谱分辨的电化学发光免疫分析及 钙钛矿的电化学发光性质研究 [D].济南:山东大 学 2018.
- [12] 庄仕伟,张宝林.金属卤化物钙钛矿材料的制备及 其发光器件研究[D].长春: 吉林大学 2018.
- [13] 班沐阳,孙宝全.卤化物钙钛矿发光性能与纳米结 构的关系及其在发光二极管中的应用[D].苏州:苏 州大学 2018.
- [14] 张胜帮,张学俊,林祥钦.乙二胺四乙酸二钠/碳糊 修饰电极测定银离子[J].分析化学研究简报, 2002 6(30):745-747.

Cyclic Voltammetry Determines Silver Ion with Perovskite Modified Glassy Carbon Electrode

LEI Longwen, PAN Yuxin, DONG Yanjie

(College of Chemistry and Chemical Engineering ,Anqing Normal University ,Anqing 246011 ,China)

Abstract: First the perovskite $C_2H_4(NH_3)_2Pb_2Br_6NCs$ was synthesized and then the perovskite was modified on a glassy carbon electrode. The modified electrode has the best sensitivity to Ag^+ . For this reason, the optimized conditions for the determination of Ag^+ by perovskite modified glassy carbon electrode are: 0. 10 mol • L^{-1} potassium hydrogen phthalate-nitric acid buffer (pH 3. 80) 2. 5 mL ,1.0 mol • L^{-1} KNO₃ 6. 5 mL. The linear range of Ag^+ determination is $\Delta I = 2$. 206 6*c*+7. 366 2 (the unit of *c* is μ mol • L^{-1}), the linear correlation coefficient is 0. 996 0 and the detection limit is 0. 80 μ mol • L^{-1} . The relative standard deviation (RSD) of the 11 measurements was 3. 5%. This method was used in the determination of waste water samples from Tongling Nonferrous Metals Plant and the recovery rate was between 99. 0% and 101. 0%. This result is consistent with the measurement result by Inductively Coupled Plasma Generation Spectrometer (ICP) .

Keywords: perovskite; modified electrode; cyclic voltammetry; silver ion

(责任编辑 刘军深)