高温溅射 Sn-Ni 复合薄膜材料及其电化学性能研究

王春花,赵 杰,刘 娜,卫 巍,董彦杰,白国梁

(安庆师范大学 化学化工学院,安徽 安庆 246011)

摘要: Sn 基负极材料由于具有高的比容量而受到研究者们的青睐。本文采用磁控溅射法制备了 Sn-Ni 复合 薄膜材料,并研究了溅射温度对 Sn-Ni 复合薄膜材料的物理及电化学性能的影响。采用 X 射线衍射(XRD) 和扫描电子显微镜(SEM)、EDS 等手段对材料进行了物理表征,并采用恒流充放电性能测试、循环伏安测试 (CV)等手段研究了溅射温度对 Sn-Ni 复合薄膜材料电化学性能的影响。研究表明,当溅射温度为 100 ℃时, Sn-Ni 复合薄膜材料的首周放电比容量为 734 mAh・g⁻¹,充电比容量为 591 mAh・g⁻¹。充放电循环 100 圈后 容量保持率为 54%,而纯锡的容量保持率仅为 28%。此外,Sn-Ni 复合薄膜材料还具有优异的倍率性能。 关键词: 磁控溅射; 负极材料; 温度条件; Sn-Ni 复合薄膜

中图分类号: G0643.36 文献标志码: A 文章编号: 1673-8020(2021) 02-0162-06

锂离子二次电池具有容量大,安全无危害,绿 色环保可回收,循环周期长等优势。为适应现代 化新时代发展需求,新能源技术愈发成熟,锂离子 电池在电动汽车等新能源领域具有很好的发展前 景^[1-2]。很早便用于商业化的石墨负极材料由于 其本身的特点(质量比容量 372 mAh • g⁻¹和体积 比能量小),难以满足电子设备的需求,因此需要 寻找高能量密度的负极材料,以适应时代发展及 商业化现实需求。于是,研究者们将目光放在具 有高能量密度的金属负极材料上。金属锡(Sn) 的理论比容量高达 990 mAh • g⁻¹,体积比容量 7200 mAh • cm⁻³,是石墨材料容量的三倍多,很 好的满足了新时代发展的需求,因此成为锂离子 电池负极研究的热点^[3]。而且其储备丰富,价格 低廉,绿色环保,具有很好的商业化前景^[4]。然 而,Sn 基材料作为锂离子电池负极材料仍然存在 着一些问题。比如,在电池充放电过程中,金属锡 的体积膨胀效应大^[5],材料的性质又不足以支撑 充放电过程中的体积变化,进而造成了电极材料 粉化,最终结构遭到破坏^[6]。此外,在充放电过 程中,由于活性物质 Sn 发生粉化或者从集流体上 发生脱离,会导致电池内阻增大,进而阻碍了电荷 运输。

为了解决这些问题,研究者们通过引进惰性 或活性元素与金属 Sn 进行复合,通过添加其它元 素充当缓冲剂,来缓解充放电过程中材料的体积 膨胀,能够有效提高材料的循环稳定性^[7-15],如 Sn-Cu,Sn-Ni 和 Sn-Ag 等负极材料。通过添加 其它元素充当缓冲剂,来缓解充放电过程中材料 的体积膨胀,能够有效提高材料的循环稳定性。 制备 Sn 基薄膜材料的方法分为化学法和物理法。 其中,物理法中常用的是磁控溅射法^[16-18]、电子 束蒸发法^[19]、静电喷雾沉积法^[20]等。

Ortiz 等^[21] 采用共还原法制备了 Cu₆Sn₅ 纳米 合金,电池充放电 80 圈循环后容量仍保持在 200 mAh \cdot g⁻¹左右; Zhang 等^[22] 采用还原法制备了 Sn-Ag 薄膜材料,实验结果显示,循环 40 圈后,该合 金薄膜材料的容量保持率为 66.7%; 穆道斌等^[23] 通 过电沉积方法制备 Sn-Ni 负极材料,该材料循环 50 圈后容量保持在 340 mAh \cdot g⁻¹,前 20 圈充放电效率 大约保持在 92%以上; 袁庆丰等^[24] 通过湿化学还原 法制备双相 Sn/Ni₃Sn₄ 合金,通过电化学测试表明, 该材料首周充电比容量为 400 mAh \cdot g⁻¹左右,循环

收稿日期: 2021-01-02; 修回日期: 2021-01-29

基金项目:安徽省自然科学基金项目(1908085QB61);安徽省高校自然科学研究重点项目(KJ2019A0546);安徽省"六卓越、一拔尖" 卓越人才培养创新项目(2019zyrc075)

第一作者简介: 王春花(1986—), 女, 山东菏泽人, 副教授, 硕士研究生导师, 博士, 研究方向为储能电化学。E-mail: springflowerwang @ sina.com

通信作者简介: 白国梁(1985一),男,山东泰安人,副教授,硕士研究生导师,博士,研究方向为储能电化学。E-mail: glbai_aqnu@ 163.com

25 圈后容量保持在 250 mAh • g⁻¹左右,通过还原法 引入 Ni 元素提高了材料循环性能,减小了容量;舒 杰等^[25] 通过机械合金法制备了 Sn-Ni 合金薄膜,经 过 50 次循环后,容量保持在 295 mAh • g⁻¹,容量保 持率约为51%。通过文献查询可知, Sn-Ni 合金对 比其它 Sn 基合金,容量更大,但 Sn-Ni 合金的问 题就是循环性能不佳,循环 20 圈左右,容量就会 衰减 40% 左右, 因此科研工作者尝试不同制备方 法制备 Sn-Ni 薄膜以提高循环性能。本文采用磁 控溅射法制备 Sn-Ni 合金薄膜,采用磁控溅射法 制备 Sn 基复合材料, 不仅厚度和致密性可以控 制,而且不需要导电剂和粘结剂,内部电阻小。罗 明^[26]在本试验室通过磁控溅射法制备 Sn-Ni 负 极薄膜,首周充电比容量 490 mAh • g⁻¹,循环 100 圈后容量保持率在48%左右,确定了磁控溅射的 最佳功率为80W。可以看出,磁控溅射的薄膜和 上述文献中制备的 Sn-Ni 薄膜比较,容量大小和 循环性都得到了很大的提高。查阅文献,溅射温 度也可能提高薄膜材料的性能。故本实验在已有 的基础上,经过系统研究探索磁控溅射温度对 Sn -Ni 负极薄膜的影响,证实溅射温度的提高可以 优化薄膜材料的性能。

1 实验部分

本文通过磁控共溅射法来制备 Sn-Ni 复合薄 膜材料。首先,采用无水乙醇对 Cu 箔进行清洗; 其次,将清洁后的铜箔裁成直径为 14 mm 的圆 片,并将裁好的铜箔固定在样品托盘上。为了对 Sn-Ni 复合薄膜材料进行 XRD 测试方便,将抛光 后的单晶硅片一同固定在样品托盘上,放入 TRP -450 型超高真空磁控溅射系统内(沈阳科仪制 造)。将本底真空度抽至 2.8~3.2×10⁻⁴ Pa 后,通 入溅射气体氩气至舱内气压稳定。待舱内气压稳 定后,打开靶材挡板,并分别打开直流、射频磁控 溅射电源进行预溅射。待预溅射完成后,打开磁 控溅射控温系统,将溅射温度分别设定为 80 ℃、 100 ℃和 120 ℃,等待温度稳定后,打开样品挡 板,制备不同溅射温度下的 Sn-Ni 复合薄膜。

采用 X 射线衍射仪(SHIMADZU 公司, XRD-600 型) 对材料进行物相分析, X 射线源为 CuKα, 扫描范围为 2θ=10°~80°, 扫描速度为 4°•min⁻¹。 采用扫描电子显微镜(SEM) 对 Sn-Ni 复合薄膜 材料进行表面形貌分析; 并通过能谱仪(EDS) 对 Sn-Ni 复合薄膜材料进行元素分析。

将制备好的 Sn-Ni 复合薄膜放入手套箱内,并 组装成 CR2016 型纽扣电池。其中,锂片作为对电 极,电解液为 1M LiPF₆(EC:DC:DMC=1:1:1)。在 深圳新威电池测试系统上进行恒流充放电测试, 测试电势范围为 0.01~2 V。采用 CHI-660E 型 电化学工作站(上海辰华仪器)进行循环伏安测 试,扫描速率为 0.1 mV • s⁻¹,扫描电势的范围为 0.01~2 V。

2 实验结果和讨论

图 1 是 Sn、Sn-Ni 和高温溅射的 Sn-Ni 材料 的 XRD 图。由图 1 可知, Sn、Sn-Ni 和高温溅射 的 Sn-Ni 材料都出现了 Sn 的衍射峰。与 Sn-Ni 和高温溅射的 Sn-Ni 材料相比, Sn 的衍射峰钝化 严重,结晶性能差; Sn-Ni 复合薄膜相对尖锐,结 晶性得到了提高。随着溅射温度的升高, Sn-Ni 材料的衍射峰峰强增加,结晶性能变好。也就是 说, Ni 的加入和高温溅射都可以提高 Sn 的结晶 性能。

图 1 Sn、Sn-Ni 和高温溅射的 Sn-Ni 材料的 XRD 图 Fig.1 XRD patterns of Sn, Sn-Ni and Sn-Ni sputtered at high temperature

图 2 是 Sn、Sn-Ni 和高温溅射的 Sn-Ni 材料 的 SEM 图。由图 2 可以看出,无论是纯 Sn 还是 不同温度溅射的 Sn-Ni 材料薄膜表面均没有出现 裂痕和针孔,非常致密。此外,我们还测试了 Sn-Ni 材料的 EDS 图,如图 3 所示。由图 3 可以看 出,Sn-Ni 材料中 Sn 和 Ni 的元素分布均匀,说明 了 Ni 元素是均匀的掺杂于 Sn 元素中间的,突出 了磁控溅射的优点。复合薄膜紧密,没有缝隙,说 明引入 Ni 元素不会破坏薄膜的完整性。由图 2 可以看到,常温溅射的 Sn-Ni 薄膜表面的颗粒比 纯锡的增多,这说明引入 Ni 粒子会导致材料颗粒 团聚现象加剧。而高温溅射的 Sn-Ni 薄膜材料表 面没有出现颗粒团聚,说明高温能避免颗粒团聚 现象的发生,进而提高了材料的结晶性能。

(a) Sn;(b) Sn-Ni;(c) Sn-Ni 80 ℃;(d) Sn-Ni 100 ℃;(e) Sn-Ni 120 ℃ 图 2 薄膜材料的 SEM 图 Fig.2 SEM images of thin film materials

图 3 Sn-Ni 的 EDS 图 Fig.3 EDS image of Sn-Ni

图 4 是 Sn、Sn-Ni 和高温溅射的 Sn-Ni 薄膜 材料的首周充放电曲线图。如图 4 所示,纯 Sn 的 充电最高,这是由于 Ni 对锂是非活性的,即 Ni 的 引入会降低材料的可逆比容量。对 Sn-Ni 薄膜材 料而言,高温溅射的 Sn-Ni 薄膜材料的首周充电 比容量均低于室温溅射的 Sn-Ni 薄膜材料的首周充电 比容量均低于室温溅射的 Sn-Ni 薄膜材料,推测 其原因为:高温下粒子运动速度快使得薄膜的致 密性好,进而使得锂离子的穿梭阻力大,故而充电 比容量降低^[27-28]。80 ℃、100 ℃和 120 ℃的 Sn-Ni 复合薄膜的首周充电比容量分别为 290、591、 337 mAh・g⁻¹,这说明了溅射温度对薄膜材料的 首周充放电比容量有着较大的影响。随着温度的 上升,首周放电比容量呈先上升后下降的趋势,这 是由于当温度提升,有助于提高薄膜的致密性和 结晶性,进而有利于锂离子的嵌入脱出。但当温 度过高时,反而阻碍了锂离子的嵌入脱出,影响了 材料的电化学性能。

图 5 是 Sn、Sn-Ni 和高温溅射的 Sn-Ni 薄膜 材料在 0.2 C 电流密度下的循环性能曲线图。测 试结果表示,充放电循环 100 圈后,80 ℃、100 ℃ 和 120 ℃溅射的 Sn-Ni 复合薄膜的容量保持率分 别为 47%、54%、44%,均高于纯锡负极薄膜的容 量保持率(仅 28%左右)和室温溅射的 Sn-Ni 复 合材料的容量保持率(43%)。100 ℃溅射温度下 的 Sn-Ni 复合薄膜不仅具有较好的循环稳定性, 而且 100 圈循环后其充电比容量也最高。

图 6 是 Sn、Sn-Ni 和高温溅射的 Sn-Ni 薄膜 材料的倍率性能循环图。由图6可知,随着充放 电电流密度的增加,纯锡负极薄膜的充电量迅速 降低至10 mAh • g⁻¹左右。当电流密度再次减小 到 0.2 C 时,纯锡负极材料的容量无法恢复。这 表明了纯锡负极材料倍率性能非常差,大电流密 度对纯锡材料造成了不可逆的损害。相比较而 言, Sn-Ni 和高温溅射的 Sn-Ni 薄膜材料的倍率 性能都得到了很大的提高。并且,0.2 C 电流密 度下,120℃、100℃、80℃和室温时 Sn-Ni 薄膜材 料的初始容量分别为 312、597、232 mAh • g⁻¹和 505 mAh • g⁻¹; 当充放电电流密度由 0.2 C 增加至 1.5 C 时,容量保持在 178、247、104 和 196 mAh • g⁻¹。 由此分析,高温溅射下 Sn-Ni 薄膜组分结晶性得 到提高,虽因温度导致容量减少,但材料循环性能 得到加强。当电流密度增大时,电极极化增大,可 逆充电比容量降低。大电流密度下,100 ℃溅射 的 Sn-Ni 薄膜材料充电比容量最高。当电流密度 恢复到小电流密度时,100 ℃溅射的 Sn-Ni 薄膜 材料充电比容量仍然最高。综上所述,100 ℃溅 射的 Sn-Ni 复合薄膜材料的倍率性能最佳。

图 7 是 100 ℃溅射的 Sn-Ni 复合薄膜材料的 循环伏安曲线图。由图 7 可以看出,在首周循环 伏安曲线上,1.30 V 附近出现了一个不可逆还原 峰,这是负极材料与电解液发生反应形成 SEI 膜 导致的。此外,在该复合薄膜的循环伏安曲线上 还出现另一对还原/氧化峰,对应位置大致在 0.2 V/0.51 V,对应的是锂离子脱嵌的过程。第 2 圈和第 3 圈的曲线基本重合,说明 Sn-Ni 复合 薄膜材料的循环稳定性好。

3 结论

本文采用磁控溅射法制备了 Sn-Ni 复合薄膜 材料,并探索了不同溅射温度对负极薄膜材料的物 理和电化学性能的影响。研究结果表明,当溅射温 度为 100 ℃时,Sn-Ni 负极薄膜材料不仅具有较好 的致密性,同时也表现出了更好的电化学性能。通 过对比研究发现,0.2 C 电流密度下,Sn-Ni 复合薄 膜材料的首周充电比容量为 591 mAh • g⁻¹,100 周 循环后容量保持率为 54%,表现出了较好的循环稳 定性。此外,该复合薄膜也表现出了良好的倍率性 能。通过比较证实提高溅射温度可以提升 Sn-Ni 薄膜性能。

参考文献:

- [1] 刘震,吴锋,王芳,等.全固态薄膜锂电池及薄膜电极材料研究进展[J].功能材料,2006(8):1191-1193.
- [2] WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries [J]. Nano Today, 2012,7(5):414-429.
- [3] 林克芝,王晓琳,徐艳辉.锂离子电池锡基负极材料的改性研究进展[J].电源技术,2005(1):62-65.
- [4] 徐高鑫·锂离子电池锡基负极材料制备及性能研究 [D].大连:大连理工大学,2019.
- [5] MARIO W, JÜRGEN O B, MARTIN W. Tin and tinbased intermetallics as new anode materials for lithiumion cells [J]. Journal of Power Sources, 2001, 94(2): 189-193
- [6] LI Z, YIN Q, HU W, et al. Tin/tin antimonide alloy nanoparticles embedded in electrospun porous carbon fibers as anode materials for lithium-ion batteries [J]. Journal of Materials Science, 2019: 465–551.
- ZHANG X, KUMAR P S, ARAVINDAN V, et al. Electrospun TiO₂ graphene composite nanofibers as a highly durable insertion anode for lithium ion batteries
 J.Journal of Physical Chemistry C, 2012, 116(28): 2945-3374.
- [8] KIM S, LEE H, PARK C M, et al. Synthesis of tin oxide nanoparticle film by cathodic electrodeposition [J]. Nano Nanotechnol, 2012, 12(2): 1616–1619.
- [9] HAN Y, WU X, MA Y, et al. Porous SnO₂ nanowire bundles for photocatalyst and Li ion battery applications [J]. CrystEngComm, 2011, 13 (10): 3506 -3510.
- [10] WANG H E.Microwave-assisted hydrothermal synthesis of porous SnO₂ nanotubes and their lithium ion storage properties [J].Journal of Solid State Chemistry,2012: 112–175.
- [11] 候志前,龙剑平,舒朝著.锂离子电池锡基负极材料 研究进展[J].电子元件与材料,2018,(1):7-12.
- [12] LI H, WANG Q, SHI L, et al. Nanosized SnSb alloy pinning on hard non-graphitic carbon spherules as anode materials for a Li ion battery [J]. Cheminform, 2002, 33 (13):103-108.

- [13] BOSE A C, KALPANA D, THANGADURAI P, et al. Synthesis and characterization of nanocrystalline SnO_2 and fabrication of lithium cell using nano $-SnO_2$ [J]. Journal of Power Sources, 2002, 107(1): 138–141.
- [14] VEERARAGHAVAN B, DURAIRAJAN A, HARAN B, et al.Study of Sn-coated graphite as anode material for secondary lithium-ion batteries [J]. Journal of the Electrochemical Society, 2002, 149(6): 377–387.
- [15] GAO S, HUANG H, WU A, et al. Formation of Sn-M (M = Fe, Al, Ni) alloy nanoparticles by DC arcdischarge and their electrochemical properties as anodes for Li-ion batteries [J]. Journal of Solid State Chemistry, 2016: 127-135.
- [16] 王旭.Y₂O₃/SiO₂/4H-SiC 堆栈栅介质 MOS 电容特 性研究 [D].西安: 西安电子科技大学,2017.
- [17] KIM J, JUN B, LEE S. Improvement of capacity and cyclability of Fe/Si multilayer thin film anodes for lithium rechargeable batteries [J]. Electrochimica Acta, 2005, 50: 3390-3394.
- [18] 王春花,罗启波,陈亚岚,等.基于射频磁控溅射技 术高容量硅负极薄膜材料可控制备研究[J].鲁东 大学学报(自然科学版),2020,36(1):55-59+97.
- [19] WU J, QIN X, ZHANG H, et al. Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode [J]. Carbon, 2015, 84: 434 -443.
- [20] BABOUKANI A R, KHAKPOUR I, ADELOWO E, et al.High-performance red phosphorus-sulfurized polyacrylonitrile composite by electrostatic spray deposition for lithium-ion batteries [J]. Electrochimica Acta, 2020,345: 136227.
- [21] ORTIZ G F, LOPEZ M C, ALCANTARA R, et al.Electrodeposition of copper-Tin nanowires on Ti foils for rechargeable lithium microbatteries with high energy density [J]. Journal of Alloys and Compounds, 2014, 585: 331-336.
- [22] ZHANG J J, XIA Y Y.Co-Sn alloys as negative electrode materials for rechargeable lithium batteries [J].
 Journal of the Electrochemical Society, 2006, 153(8): A1466-A1471.
- [23] 穆道斌,陈实,郭延平,等.电沉积 Sn-Ni 合金锂离子
 电池负极材料的研制 [J].稀有金属,2007(6):778
 -783.
- [24] 袁庆丰,卜冬蕾,王文璐,等.锂离子电池负极 Sn/ Ni3Sn4 合金的制备和表征 [J].过程工程学报,2006
 (6):983-986.
- [25] 舒杰,程新群,史鹏飞.锂离子电池用 Sn-Ni 合金负极的研究[J].电池,2004(4):235-237.

- [26] 罗明.基于磁控溅射技术 Sn 基薄膜负极材料可控制 备及电化学性能研究 [D].安庆:安庆师范大 学,2019.
- [27] 戴俊.电化学沉积合成锡基合金薄膜及其作为锂离

子电池负极材料的研究 [D]. 合肥: 合肥工业大 学,2009.

[28] 陈涛.大功率全固态薄膜锂离子电池的制备及性能 研究[D].重庆:重庆师范大学,2014.

Electrochemical Properties of Sn-Ni Composite Films by Sputtering at High Temperature

WANG Chunhua, ZHAO Jie, LIU Na, WEI Wei, DONG Yanjie, BAI Guoliang

(College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China)

Abstract: Due to the high specific capacity, the Sn-based anode materials have attracted very much attention. In this paper, Sn-Ni composite thin films were prepared by magnetron sputtering method, and the influence of sputtering temperature on the physical and electrochemical properties of Sn-Ni composite thin films was studied. The materials were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and EDS, and the influence of sputtering temperature on the electrochemical performance of Sn-Ni composite films was studied by means of the constant current charge-discharge performance test and cyclic voltammetry test (CV). The results show that the initial specific discharge-charging capacity of Sn-Ni composite film are 734 mAh \cdot g⁻¹ and 591 mAh \cdot g⁻¹ at the sputtering temperature of 100 °C. And the capacity retention rate of Sn-Ni composite film is 54%. However, the capacity retention rate of pure tin is only 28% after 100 cycles. In addition, Sn-Ni composite films also have excellent rate performance.

Keywords: magnetron sputtering; Sn-Ni anode material; high temperature sputtering; lithium ion battery (责任编辑 刘军深)

<text><list-item><list-item><list-item>